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Abstract.—Sex determination (SD) mode is documented in only 26% of turtle species; temperature dependent 
sex determination (TSD) is common but not ubiquitous. SD mode is documented for only five tortoise species; 
all of these have TSD with the la pattern. Temperature dependent sex determination was reported in Galapagos 
tortoises (Chelonoidis nigra complex) in 1991 based solely on a personal communication. Here we report TSD 
pattern, incubation duration, and hatchling sexual dimorphism in the Espahola Giant Tortoise (Chelonoidis 
hoodensis) of the Galapagos Islands based on experiments conducted in 1986-87. We found strong evidence 
for Type la TSD, a pivotal incubation temperature of 28.3 °C, and a range for transition temperatures of 25.2-31.4 
°C. We also found longer incubation durations for male than for female hatchlings, and describe a new method 
for sex identification for hatchling tortoises. These results have important implications for incubation of eggs 
for head-starting captive breeding, especially for conservation purposes, and for interpretation of data from 
natural nests. We caution against the assumption that all C. nigra complex species have similar pivotal or 
transitional temperature ranges, and encourage evaluation of more species in this group. 

Resumen.—El modo de determinacion sexual (DS) solamente se ha documentado para el 26% de las especies de 
tortugas; la determinacion del sexo por la temperatura (DST) en las tortugas es comun pero no es generalizada. 
Se conoce el modo SD solamente para cinco especies de tortugas; todas ellas tienen el modo de DST. Se 
reporto en 1991 la determinacion TSD para las tortugas de Galapagos (complejo Chelonoidis nigra), sobre la 
base de una comunicacion personal. En este trabajo reportamos el patron de DST, la duracion de la incubacion 
y el dimorfismo sexual a la eclosion en Chelonoidis hoodensis (la Tortuga Gigante de Espahola de las Islas 
Galapagos), sobre la base de experimentos realizados entre 1986-87. Nosotros encontramos firme evidencia 
para el DST tipo la, una temperatura pivotal de incubacion de 28.3 °C y un rango de temperaturas transicionales 
de 25.2-31.4 °C. Tambien detectamos que los periodos de incubacion hasta la eclosion de tortugas machos 
fueron mas prolongados en comparacion con las hembras. Estos resultados tienen implicaciones ventajosas 
e importantes para la incubacion de los huevos y para la interpretacion de datos tornados de nidos naturales. 
Sugerimos evitar el inferir que todas las especies del complejo C. nigra tengan rangos de temperaturas 
transicionales similares y sugerimos la evaluacion de mas especies dentro de este grupo. 
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Introduction 

Sex determination (SD) mode is documented in only 

86 (26%) of the approximately 335 known turtle spe¬ 
cies; temperature dependent sex determination (TSD) 
is common but is not ubiquitous (The Tree of Sex Con¬ 
sortium 2014a, b). In the family Testudinidae (tortoises, 
ca. 57 extant species, TTWG 2017), SD mode is docu¬ 
mented for only five species: Testudo hermanni (Eende- 
bak 1995), T. graeca (Pieau 1971), Gopherus agassizii 

(Spotila et al. 1994), G. polyphemus (Burke et al. 1996; 
Demuth 2001), and Malacochersus tornieri (Ewert et 

al. 2004); all have TSD Type la. Two other Testudinidae 
(“Geochelone elephantopus” - Chelonoidis nigra com¬ 
plex and “G. gigantea ” = Aldabrachelys gigantea) were 
reported as TSD in Janzen and Paukstis (1991), however 

both reports were based on unpublished data. The source 
data for C. nigra complex was unclear but presumably 
based on unpublished work by Sancho (1988) (Janzen, 
pers. comm.). 

Chelonoidis is the largest tortoise genus (ca. 15 extant 
species, TTWG 2017); all Chelonoidis species are South 
American and most (10-12) Chelonoidis species are in 

the C. nigra complex (Galapagos giant tortoises) (van 
Dijk et al. 2014; Poulakakis et al. 2015; TTWG 2017). 
Populations of Galapagos giant tortoises have been 
greatly reduced, in some cases to extinction, due to pre¬ 
dation by humans and by interactions with introduced 
species (MacFarland et. al. 1974a, b). Captive rearing 
of several Chelonoidis species for repatriation to their 

islands of origin has been an important part of Galapagos 
conservation programs (Cayot et al. 1994; Cayot 2008). 
These programs have become increasingly sophisticated, 
now including genetic analyses (Russello et al. 2010; 
Milinkovitch et al. 2013) and studies of the impact that 
repatriations have on vegetation (Gibbs et al. 2008). 

The discovery that sex is determined by incubation 
temperature in most turtles has been of interest to the 
coordinators of Galapagos giant tortoise conservation 
programs for decades. This is because detailed knowl¬ 
edge of the effects of incubation temperature on hatch¬ 
ling sex could help managers avoid obvious pitfalls, such 
as producing all males, and to deliberately manipulate 
sex ratios (Vogt 1994). However, SD studies of Chelo¬ 

noidis have not progressed because sexually dimorphic 
characteristics typically take many years to develop and 
it is unacceptable to conduct risky procedures on individ¬ 
uals so valuable to conservation. Therefore, the develop¬ 
ment of quick, easy, and harmless ways to identify the 
sex of hatchlings (e.g., Burke et al. 1994; Mrosovsky et 
al. 1999; Valenzuela et al. 2004; Martinez-Silvestre et al. 
2015) are potentially very valuable. 

Typically, investigations of TSD target four param¬ 
eters: 1) the TSD pattern (Ewert and Nelson 1991), 2) 

the pivotal (threshold; Bull et al. 1982) temperature, (= 
the constant incubation temperature that results in 1:1 
offspring sex ratios, Mrosovsky and Pieau 1991), 3) the 

transitional range of incubation temperatures (TRT) (= 
the range of constant incubation temperatures that pro¬ 
duce both sexes), and 4) the temperature-sensitive period 
(TSP) (= portion of the incubation period during which 
incubation temperature can affect hatchling sex, Bull and 

Vogt 1981). We sought to identify the SD mode, pivotal 
temperature, and TRT of the Espanola Giant Tortoise 
(iChelonoidis hoodensis) of the Galapagos Islands and 
develop ways to identify hatchling sex using external 
morphology and incubation duration. This species has 
been the subject of long term conservation efforts (Gibbs 

et al. 2014). Espanola Giant Tortoises were reduced to 
just 15 individuals by 1960; these were brought into cap¬ 
tivity 1963-1974 and became the parents of thousands of 
offspring (Cayot et al. 1994; Cayot 2008; Marquez et al. 
1991). Nearly 1,500 offspring have been released onto 

Espanola, and successful reproduction was first observed 
starting in 1990 (Marquez et al. 1991; Cayot et al. 1994; 

Cayot 2008). Although C. hoodensis remains Critically 
Endangered (CITES I, IUCN Red List), this is clearly an 
example of a highly successful chelonian head-starting 

program, despite low levels of genetic variation (Mil¬ 
inkovitch et al. 2013). 

Materials and Methods 

Incubation of eggs at different temperatures 

A total of 189 Chelonoidis hoodensis eggs laid in 1986 

were incubated at three temperatures: 25.5,29.5, and 33.5 
°C (67 eggs at each temperature) at the Galapagos Rear¬ 
ing Center, Puerto Ayora, Santa Cruz, Galapagos, Ecua¬ 
dor. Eggs were placed in plastic boxes with damp ver- 
miculite; boxes were covered and placed in incubation 
chambers at constant temperatures. Boxes were rotated 
inside the incubators once per week to avoid effects of 
any thermal gradients in the chamber (Gutzke and Pauk¬ 
stis 1983). Incubation data were also collected from six 
additional tortoise hatchlings incubated and hatched ear¬ 
lier in the same facility. 

Sex identification 

Hatchling sex was identified in three ways: by direct 
gross observation of gonads, histological examination 
of gonads, and by laparoscopy. The gonads from 35 
young tortoises that died of natural causes were exam¬ 
ined via both direct gross observations of gonads and 
histological examinations of gonads. In some cases, the 
gonads were removed and fixed soon after the tortoise’s 
death. However, most samples came from tortoises that 
were preserved intact either in formalin or alcohol. The 
gonads were embedded in Paraplast, cut at 5 pm thick¬ 
ness and stained with Harris’ Hematoxylin and Eosin yel¬ 
low stains. The histological procedures are described in 
Sancho (1988). Samples from tortoises fixed in alcohol 
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produced very poor histological sections and the gonads 
could not be identified. Fixations in formalin was also 
poor, but the gonads could be identified (Sancho 1988). 

Laparoscopies were performed on 15 additional young 
tortoises; using standard surgical techniques. A small 
incision was made in the inguinal pocket just anterior to 
tortoises’ hind legs to permit examination of the gonads. 
After observation, the skin was sutured and bathed with 

an antiseptic solution. We also counted the number of 
large dorsal scales in the tails of these individuals. 

We assessed SD mode and estimated both pivotal tem¬ 
perature and TRT using the program TSD 4.0.3 (Giron- 

dot 1999, 2012; Godfrey et al. 2003) as in Burke and 
Calichio (2014). This program uses a maximum likeli¬ 
hood approach with a rather simple mathematical equa¬ 
tion to compare the fit of observed data to four different 
sex determination models (genotypic sex determination, 
TSD IA, IB, and II) and uses Akaike Information Cri¬ 

terion (AIC) to rank the different models by penalizing 
for more parameters. The minimum data requirement for 
the TSD 4.0.3 program is sex ratio data from at least two 
constant temperature incubation experiments in which 
both sexes are produced. 

Results 

The juvenile gonads of Chelonoidis 
hoodensis 

We examined the tortoise gonads both macroscopi- 
cally and histologically; there was complete agreement 
between sex identification according to the gross mor¬ 

phology and the histology of gonads (Sancho 1988). The 
characteristics of juvenile gonads in C. hoodensis were 
similar to those of other turtles (Gutzke and Bull 1986), 
they consisted of two parts, the cortex and the medulla. 
The testicles of the juvenile tortoises (of up to two years 
of age) were white cylindrical structures of 7 to 8 mm 
in length, located on the ventral surface of the kidney. 
Testicles had a uniform reticular pattern of vasculariza¬ 
tion and the cortex was thin. Males lacked Muellerian 

ducts (or oviducts). Ovaries in juvenile tortoises, in con¬ 
trast, were longer, thicker and flatter than testicles (mean 
length 11 mm). Vascularization was restricted to the 

medulla and the cortex was thick. In females, sex identi¬ 
fication was aided by the presence of Muellerian ducts. 

Germ cells were found in the medulla of males and 
in the cortex of females (Sancho 1988). Germ cells were 
rounder and larger than the somatic cells of the gonads. 
In one individual, germ cells were found both in the cor¬ 
tex and the medulla; in this embryo sex was not yet deter¬ 
mined. 

Effect of the temperature of incubation on 
sex determination 

For unknown reasons, many embryos died during early 

incubation and others died during the last stages of incu¬ 
bation or at the time of hatching. Ten of the 11 hatchlings 
(91% male, hatch rate = 16.4%) from eggs incubated at 
25.5 °C were identified as males, one was a female. At 
29.5 °C, 27 (hatch rate = 40.3%) tortoises hatched and 
survived. We were able to identify sex in only 15 of 
these. Five of the 15 sexable hatchlings from eggs incu¬ 
bated at 29.5 °C were identified as males, 10 were female 
(33% male). All of the eggs incubated at 33.5 °C died 
during early development. 

Results of the Hill and logistic models (program TSD 
4.0.3) were indistinguishable using AIC (both AIC val¬ 
ues = 8.99, Akaike weights = 0.50, goodness of fit < 
0.001). This is strong evidence for Type la TSD. The 
logistic model predicted a pivotal incubation temperature 
of 28.3 °C (S.E. = 0.24), and a range for transition tem¬ 
peratures (TRT) of 25.2 °C (S.E. = 0.56)-31.4 °C (S.E. = 

0.55). The Hill model predicted a pivotal incubation tem¬ 
perature of 28.3 °C (S.E. = 0.25), and a range for transi¬ 
tion temperatures (TRT) of 25.2 °C (S.E. = 0.24)-31.5 
°C (S.E. =0.29). 

Incubation duration for male hatchlings ranged from 
125-167 days (x = 141.7) and incubation duration for 

female hatchlings ranged from 111-122 (x = 118.9). 
Incubation duration for males was significantly longer 

than for females (t = 4.24, d.f. = 18, two tailed P < 0.001). 
The number of large dorsal scales in the tails of hatch¬ 

lings identified as males ranged from 4-7 (n - 10, x = 
4.9), females ranged from 2-5 (n — 10, x = 3.7). Male 
hatchlings had significantly more large dorsal scales on 
their tails than did females (t = 2.48, d.f. = 18, two tailed 
P = 0.023). 

Discussion 

Our finding that the Espanola Giant Tortoise (Chelonoi¬ 

dis hoodensis) has TSD is not surprising because this 

was reported by Sancho (1988) and is well known by 
the managers in charge of the Galapagos Tortoise Cap¬ 
tive Breeding Program (Marquez et al. 1999; Burke, 

pers. obs.). However, we have added considerable detail 
to previously vague reports, including the pivotal tem¬ 
perature and the range for transition temperatures. These 
findings can inform captive breeding programs and field 
studies. For example, this type of information has been 
used in other species to predict hatchling sex ratios in 
natural nests (Georges et al. 1994; Delmas et al. 2008; 
Grosse et al. 2014). 

Our finding that eggs incubated at female-produc¬ 
ing temperatures and eggs incubated at male-produc¬ 
ing temperatures differed in incubation duration is also 
not surprising, because the negative correlation between 
incubation temperature and incubation duration is well 
known for many turtles (e.g., Yntema 1978; Mrosovsky 
andYntema 1980; Booth 1998). However, although this 

knowledge is commonly used in studies of sea turtles 
(e.g., Mrosovsky et al. 1999) to predict sex ratios of natu- 
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ral nests, we could find no similar studies in other turtles. 
We suggest that incubation duration could be used more 
commonly to predict sex in both artificially incubated 
eggs and eggs incubated in situ. 

We consider our results indicating that female C. 

hoodensis had fewer large scales on the dorsal aspects 
of their tails interesting but needing additional investiga¬ 
tion, especially a standardization of the method of count¬ 
ing tail scales. If the number of tail scales is sexually 
dimorphic, this technique could provide an extremely 
convenient way to sex hatchlings, and could be poten¬ 
tially valuable to many studies. We point out that incu¬ 
bation temperature is known to affect many hatchling 

characteristics, such as survivorship, body size, locomo¬ 
tor performance, and growth (e.g., Janzen 1993; Roosen- 
burg and Kelley 1996; Demuth 2001). In addition, Burke 

et al. (1994), Valenzuela et al. (2004), and Lubiana and 
Junior (2009) found significant sexual dimorphisms in 
body size and shape in hatchling turtles, while tail length 
is commonly sexually dimorphic in turtles as well (e.g., 
Casale et al. 2005). 

Our results on pivotal temperature, transitional tem¬ 
peratures, and incubation duration should not be assumed 
to be identical in other Chelonoidis, even other C. nigra 

complex species. Variation in TSD patterns can occur 

between closely related turtle species (Bull et al. 1982; 
Ewert et al. 1994; Ewert et al. 2004) and even within a 
species (Ewert et al. 2005).Because of the diverse nesting 
microhabitats used by C. nigra complex species (Burke, 
pers. obs.), there may be considerable diversity in pivotal 
temperatures, TRT, and TSR 
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